Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guarantees for Sound Abstractions for Generalized Planning (Extended Paper) (1905.12071v2)

Published 28 May 2019 in cs.AI and cs.LO

Abstract: Generalized planning is about finding plans that solve collections of planning instances, often infinite collections, rather than single instances. Recently it has been shown how to reduce the planning problem for generalized planning to the planning problem for a qualitative numerical problem; the latter being a reformulation that simultaneously captures all the instances in the collection. An important thread of research thus consists in finding such reformulations, or abstractions, automatically. A recent proposal learns the abstractions inductively from a finite and small sample of transitions from instances in the collection. However, as in all inductive processes, the learned abstraction is not guaranteed to be correct for the whole collection. In this work we address this limitation by performing an analysis of the abstraction with respect to the collection, and show how to obtain formal guarantees for generalization. These guarantees, in the form of first-order formulas, may be used to 1) define subcollections of instances on which the abstraction is guaranteed to be sound, 2) obtain necessary conditions for generalization under certain assumptions, and 3) do automated synthesis of complex invariants for planning problems. Our framework is general, it can be extended or combined with other approaches, and it has applications that go beyond generalized planning.

Citations (8)

Summary

We haven't generated a summary for this paper yet.