Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Incidence Networks for Geometric Deep Learning (1905.11460v4)

Published 27 May 2019 in cs.LG and stat.ML

Abstract: Sparse incidence tensors can represent a variety of structured data. For example, we may represent attributed graphs using their node-node, node-edge, or edge-edge incidence matrices. In higher dimensions, incidence tensors can represent simplicial complexes and polytopes. In this paper, we formalize incidence tensors, analyze their structure, and present the family of equivariant networks that operate on them. We show that any incidence tensor decomposes into invariant subsets. This decomposition, in turn, leads to a decomposition of the corresponding equivariant linear maps, for which we prove an efficient pooling-and-broadcasting implementation.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.