Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Walsh-Hadamard Variational Inference for Bayesian Deep Learning (1905.11248v2)

Published 27 May 2019 in stat.ML and cs.LG

Abstract: Over-parameterized models, such as DeepNets and ConvNets, form a class of models that are routinely adopted in a wide variety of applications, and for which Bayesian inference is desirable but extremely challenging. Variational inference offers the tools to tackle this challenge in a scalable way and with some degree of flexibility on the approximation, but for over-parameterized models this is challenging due to the over-regularization property of the variational objective. Inspired by the literature on kernel methods, and in particular on structured approximations of distributions of random matrices, this paper proposes Walsh-Hadamard Variational Inference (WHVI), which uses Walsh-Hadamard-based factorization strategies to reduce the parameterization and accelerate computations, thus avoiding over-regularization issues with the variational objective. Extensive theoretical and empirical analyses demonstrate that WHVI yields considerable speedups and model reductions compared to other techniques to carry out approximate inference for over-parameterized models, and ultimately show how advances in kernel methods can be translated into advances in approximate Bayesian inference.

Citations (14)

Summary

We haven't generated a summary for this paper yet.