Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
29 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
210 tokens/sec
2000 character limit reached

On Motion Control and Machine Learning for Robotic Assembly (1905.11129v1)

Published 27 May 2019 in cs.RO and cs.SY

Abstract: Industrial robots typically require very structured and predictable working environments, and explicit programming, in order to perform well. Therefore, expensive and time-consuming engineering work is a major obstruction when mediating tasks to robots. This thesis presents methods that decrease the amount of engineering work required for robot programming, and increase the ability of robots to handle unforeseen events. This has two main benefits: Firstly, the programming can be done faster, and secondly, it becomes accessible to users without engineering experience. Even though these methods could be used for various types of robot applications, this thesis is focused on robotic assembly tasks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)