Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector Bundles on Flag varieties (1905.10151v2)

Published 24 May 2019 in math.AG

Abstract: We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2\le d\leq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $kn$, where $k$ is an algebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $r\le d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d{\vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,\cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,\cdots,d_s)$. Furthermore, we generalize the Grauert-M$\ddot{\text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1\le i\le n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.