Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Graphs against an Unknown Distribution (1905.09903v5)

Published 23 May 2019 in math.CO and cs.DM

Abstract: The area of graph property testing seeks to understand the relation between the global properties of a graph and its local statistics. In the classical model, the local statistics of a graph is defined relative to a uniform distribution over the graph's vertex set. A graph property $\mathcal{P}$ is said to be testable if the local statistics of a graph can allow one to distinguish between graphs satisfying $\mathcal{P}$ and those that are far from satisfying it. Goldreich recently introduced a generalization of this model in which one endows the vertex set of the input graph with an arbitrary and unknown distribution, and asked which of the properties that can be tested in the classical model can also be tested in this more general setting. We completely resolve this problem by giving a (surprisingly "clean") characterization of these properties. To this end, we prove a removal lemma for vertex weighted graphs which is of independent interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.