Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Uncertainty in Deep Learning for Selective Classification (1905.09509v1)

Published 23 May 2019 in cs.LG, cs.AI, math.OC, stat.ML, and stat.OT

Abstract: The wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. In this study, we propose a mixed-integer programming framework for classification with reject option (also known as selective classification), that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. Our results indicate superior performance of our framework both in non-rejected accuracy and rejection quality on several publicly available datasets. Moreover, we extend our framework to cost-sensitive settings and show that our approach outperforms industry standard methods significantly for online fraud management in real-world settings.

Citations (9)

Summary

We haven't generated a summary for this paper yet.