Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit theorems for Jacobi ensembles with large parameters (1905.07983v2)

Published 20 May 2019 in math.PR, math-ph, and math.MP

Abstract: Consider Jacobi random matrix ensembles with the distributions $$c_{k_1,k_2,k_3}\prod_{1\leq i< j \leq N}\left(x_j-x_i\right){k_3}\prod_{i=1}N \left(1-x_i\right){\frac{k_1+k_2}{2}-\frac{1}{2}}\left(1+x_i\right){\frac{k_2}{2}-\frac{1}{2}} dx$$ of the eigenvalues on the alcoves $$A:={x\in\mathbb RN| > -1\leq x_1\le ...\le x_N\leq 1}.$$ For $(k_1,k_2,k_3)=\kappa\cdot (a,b,1)$ with $a,b>0$ fixed, we derive a central limit theorem for the distributions above for $\kappa\to\infty$. The drift and the inverse of the limit covariance matrix are expressed in terms of the zeros of classical Jacobi polynomials. We also rewrite the CLT in trigonometric form and determine the eigenvalues and eigenvectors of the limit covariance matrices. These results are related to corresponding limits for $\beta$-Hermite and $\beta$-Laguerre ensembles for $\beta\to\infty$ by Dumitriu and Edelman and by Voit.

Summary

We haven't generated a summary for this paper yet.