Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of some vertex operator algebras of rank 3 (1905.07500v2)

Published 17 May 2019 in math.QA, math-ph, math.MP, and math.NT

Abstract: We discuss the classification of strongly regular vertex operator algebras (VOAs) with exactly three simple modules whose character vector satisfies a monic modular linear differential equation with irreducible monodromy. Our Main Theorem provides a classification of all such VOAs in the form of one infinite family of affine VOAs, one individual affine algebra and two Virasoro algebras, together with a family of eleven exceptional character vectors and associated data that we call the $U$-series. We prove that there are at least $15$ VOAs in the $U$-series occurring as commutants in a Schellekens list holomorphic VOA. These include the affine algebra $E_{8,2}$ and H\"ohn's Baby Monster VOA $\mathbf{VB}\natural_{(0)}$ but the other $13$ seem to be new. The idea in the proof of our Main Theorem is to exploit properties of a family of vector-valued modular forms with rational functions as Fourier coefficients, which solves a family of modular linear differential equations in terms of generalized hypergeometric series.

Citations (6)

Summary

We haven't generated a summary for this paper yet.