Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cleaned Similarity for Better Memory-Based Recommenders (1905.07370v1)

Published 17 May 2019 in cs.IR and cs.LG

Abstract: Memory-based collaborative filtering methods like user or item k-nearest neighbors (kNN) are a simple yet effective solution to the recommendation problem. The backbone of these methods is the estimation of the empirical similarity between users/items. In this paper, we analyze the spectral properties of the Pearson and the cosine similarity estimators, and we use tools from random matrix theory to argue that they suffer from noise and eigenvalues spreading. We argue that, unlike the Pearson correlation, the cosine similarity naturally possesses the desirable property of eigenvalue shrinkage for large eigenvalues. However, due to its zero-mean assumption, it overestimates the largest eigenvalues. We quantify this overestimation and present a simple re-scaling and noise cleaning scheme. This results in better performance of the memory-based methods compared to their vanilla counterparts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.