Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MaMiC: Macro and Micro Curriculum for Robotic Reinforcement Learning (1905.07193v1)

Published 17 May 2019 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Shaping in humans and animals has been shown to be a powerful tool for learning complex tasks as compared to learning in a randomized fashion. This makes the problem less complex and enables one to solve the easier sub task at hand first. Generating a curriculum for such guided learning involves subjecting the agent to easier goals first, and then gradually increasing their difficulty. This paper takes a similar direction and proposes a dual curriculum scheme for solving robotic manipulation tasks with sparse rewards, called MaMiC. It includes a macro curriculum scheme which divides the task into multiple sub-tasks followed by a micro curriculum scheme which enables the agent to learn between such discovered sub-tasks. We show how combining macro and micro curriculum strategies help in overcoming major exploratory constraints considered in robot manipulation tasks without having to engineer any complex rewards. We also illustrate the meaning of the individual curricula and how they can be used independently based on the task. The performance of such a dual curriculum scheme is analyzed on the Fetch environments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.