Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Balian-Low theorem for locally compact abelian groups and vector bundles (1905.06827v2)

Published 16 May 2019 in math.FA and math.OA

Abstract: Let $\Lambda$ be a lattice in a second countable, locally compact abelian group $G$ with annihilator $\Lambda{\perp} \subseteq \widehat{G}$. We investigate the validity of the following statement: For every $\eta$ in the Feichtinger algebra $S_0(G)$, the Gabor system ${ M_{\tau} T_{\lambda} \eta }_{\lambda \in \Lambda, \tau \in \Lambda{\perp}}$ is not a frame for $L2(G)$. When $G = \mathbb{R}$ and $\Lambda = \alpha \mathbb{Z}$, this statement is a variant of the Balian-Low theorem. Extending a result of R. Balan, we show that whether the statement generalizes to $(G,\Lambda)$ is equivalent to the nontriviality of a certain vector bundle over the compact space $(G/\Lambda) \times (\widehat{G}/\Lambda{\perp})$. We prove this equivalence using a connection between Gabor frames and Heisenberg modules. More specifically, we show that the Zak transform can be viewed as an isomorphism of certain Hilbert $C*$-modules. As an application, we prove a new Balian-Low theorem for the group $\mathbb{R} \times \mathbb{Q}_p$, where $\mathbb{Q}_p$ denotes the $p$-adic numbers.

Summary

We haven't generated a summary for this paper yet.