Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Adaptive estimation in the linear random coefficients model when regressors have limited variation (1905.06584v4)

Published 16 May 2019 in math.ST and stat.TH

Abstract: We consider a linear model where the coefficients - intercept and slopes - are random with a law in a nonparametric class and independent from the regressors. Identification often requires the regressors to have a support which is the whole space. This is hardly ever the case in practice. Alternatively, the coefficients can have a compact support but this is not compatible with unbounded error terms as usual in regression models. In this paper, the regressors can have a support which is a proper subset but the slopes (not the intercept) do not have heavy-tails. Lower bounds on the supremum risk for the estimation of the joint density of the random coefficients density are obtained for a wide range of smoothness, where some allow for polynomial and nearly parametric rates of convergence. We present a minimax optimal estimator, a data-driven rule for adaptive estimation, and made available a R package.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.