Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality-based Pulse Estimation from NIR Face Video with Application to Driver Monitoring (1905.06568v2)

Published 16 May 2019 in cs.CV, eess.IV, and eess.SP

Abstract: In this paper we develop a robust for heart rate (HR) estimation method using face video for challenging scenarios with high variability sources such as head movement, illumination changes, vibration, blur, etc. Our method employs a quality measure Q to extract a remote Plethysmography (rPPG) signal as clean as possible from a specific face video segment. Our main motivation is developing robust technology for driver monitoring. Therefore, for our experiments we use a self-collected dataset consisting of Near Infrared (NIR) videos acquired with a camera mounted in the dashboard of a real moving car. We compare the performance of a classic rPPG algorithm, and the performance of the same method, but using Q for selecting which video segments present a lower amount of variability. Our results show that using the video segments with the highest quality in a realistic driving setup improves the HR estimation with a relative accuracy improvement larger than 20%.

Citations (10)

Summary

We haven't generated a summary for this paper yet.