Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric Losses for Distributional Learning (1905.06005v1)

Published 15 May 2019 in stat.ML, cs.LG, and math.OC

Abstract: Building upon recent advances in entropy-regularized optimal transport, and upon Fenchel duality between measures and continuous functions , we propose a generalization of the logistic loss that incorporates a metric or cost between classes. Unlike previous attempts to use optimal transport distances for learning, our loss results in unconstrained convex objective functions, supports infinite (or very large) class spaces, and naturally defines a geometric generalization of the softmax operator. The geometric properties of this loss make it suitable for predicting sparse and singular distributions, for instance supported on curves or hyper-surfaces. We study the theoretical properties of our loss and show-case its effectiveness on two applications: ordinal regression and drawing generation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.