Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem (1905.05070v3)

Published 13 May 2019 in math.NA and cs.NA

Abstract: An initial-boundary value problem with a Caputo time derivative of fractional order $\alpha\in(0,1)$ is considered, solutions of which typically exhibit a singular behaviour at an initial time. An L2-type discrete fractional-derivative operator of order $3-\alpha$ is considered on nonuniform temporal meshes. Sufficient conditions for the inverse-monotonicity of this operator are established, which yields sharp pointwise-in-time error bounds on quasi-graded temporal meshes with arbitrary degree of grading. In particular, those results imply that milder (compared to the optimal) grading yields optimal convergence rates in positive time. Semi-discretizations in time and full discretizations are addressed. The theoretical findings are illustrated by numerical experiments.

Citations (58)

Summary

We haven't generated a summary for this paper yet.