Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Generating functions for Ohno type sums of finite and symmetric multiple zeta-star values (1905.04875v1)

Published 13 May 2019 in math.NT

Abstract: Ohno's relation states that a certain sum, which we call an Ohno type sum, of multiple zeta values remains unchanged if we replace the base index by its dual index. In view of Oyama's theorem concerning Ohno type sums of finite and symmetric multiple zeta values, Kaneko looked at Ohno type sums of finite and symmetric multiple zeta-star values and made a conjecture on the generating function for a specific index of depth three. In this paper, we confirm this conjecture and further give a formula for arbitrary indices of depth three.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.