Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torus actions of complexity one in non-general position (1905.04761v1)

Published 12 May 2019 in math.AT and math.CO

Abstract: Let the compact torus $T{n-1}$ act on a smooth compact manifold $X{2n}$ effectively with nonempty finite set of fixed points. We pose the question: what can be said about the orbit space $X{2n}/T{n-1}$ if the action is cohomologically equivariantly formal (which essentially means that $H{odd}(X{2n};\mathbb{Z})=0$). It happens that homology of the orbit space can be arbitrary in degrees $3$ and higher. For any finite simplicial complex $L$ we construct an equivariantly formal manifold $X{2n}$ such that $X{2n}/T{n-1}$ is homotopy equivalent to $\Sigma3L$. The constructed manifold $X{2n}$ is the total space of the projective line bundle over the permutohedral variety hence the action on $X{2n}$ is Hamiltonian and cohomologically equivariantly formal. We introduce the notion of the action in $j$-general position and prove that, for any simplicial complex $M$, there exists an equivariantly formal action of complexity one in $j$-general position such that its orbit space is homotopy equivalent to $\Sigma{j+2}M$.

Summary

We haven't generated a summary for this paper yet.