Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle Density Estimation with Grid-Projected Adaptive Kernels (1905.04754v1)

Published 12 May 2019 in physics.comp-ph

Abstract: The reconstruction of smooth density fields from scattered data points is a procedure that has multiple applications in a variety of disciplines, including Lagrangian (particle-based) models of solute transport in fluids. In random walk particle tracking (RWPT) simulations, particle density is directly linked to solute concentrations, which is normally the main variable of interest, not just for visualization and post-processing of the results, but also for the computation of non-linear processes, such as chemical reactions. Previous works have shown the superiority of kernel density estimation (KDE) over other methods such as binning, in terms of its ability to accurately estimate the "true" particle density relying on a limited amount of information. Here, we develop a grid-projected KDE methodology to determine particle densities by applying kernel smoothing on a pilot binning; this may be seen as a "hybrid" approach between binning and KDE. The kernel bandwidth is optimized locally. Through simple implementation examples, we elucidate several appealing aspects of the proposed approach, including its computational efficiency and the possibility to account for typical boundary conditions, which would otherwise be cumbersome in conventional KDE.

Summary

We haven't generated a summary for this paper yet.