Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Zero-Shot Learning for Scene Sketch (1905.04510v1)

Published 11 May 2019 in cs.CV

Abstract: We introduce a novel problem of scene sketch zero-shot learning (SSZSL), which is a challenging task, since (i) different from photo, the gap between common semantic domain (e.g., word vector) and sketch is too huge to exploit common semantic knowledge as the bridge for knowledge transfer, and (ii) compared with single-object sketch, more expressive feature representation for scene sketch is required to accommodate its high-level of abstraction and complexity. To overcome these challenges, we propose a deep embedding model for scene sketch zero-shot learning. In particular, we propose the augmented semantic vector to conduct domain alignment by fusing multi-modal semantic knowledge (e.g., cartoon image, natural image, text description), and adopt attention-based network for scene sketch feature learning. Moreover, we propose a novel distance metric to improve the similarity measure during testing. Extensive experiments and ablation studies demonstrate the benefit of our sketch-specific design.

Citations (12)

Summary

We haven't generated a summary for this paper yet.