Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An LP-Based Approach for Goal Recognition as Planning (1905.04210v3)

Published 10 May 2019 in cs.AI

Abstract: Goal recognition aims to recognize the set of candidate goals that are compatible with the observed behavior of an agent. In this paper, we develop a method based on the operator-counting framework that efficiently computes solutions that satisfy the observations and uses the information generated to solve goal recognition tasks. Our method reasons explicitly about both partial and noisy observations: estimating uncertainty for the former, and satisfying observations given the unreliability of the sensor for the latter. We evaluate our approach empirically over a large data set, analyzing its components on how each can impact the quality of the solutions. In general, our approach is superior to previous methods in terms of agreement ratio, accuracy, and spread. Finally, our approach paves the way for new research on combinatorial optimization to solve goal recognition tasks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.