Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Perception and Control from Temporal Logic Specifications (1905.03662v1)

Published 9 May 2019 in cs.SY

Abstract: Next-generation autonomous systems must execute complex tasks in uncertain environments. Active perception, where an autonomous agent selects actions to increase knowledge about the environment, has gained traction in recent years for motion planning under uncertainty. One prominent approach is planning in the belief space. However, most belief-space planning starts with a known reward function, which can be difficult to specify for complex tasks. On the other hand, symbolic control methods automatically synthesize controllers to achieve logical specifications, but often do not deal well with uncertainty. In this work, we propose a framework for scalable task and motion planning in uncertain environments that combines the best of belief-space planning and symbolic control. Specifically, we provide a counterexample-guided-inductive-synthesis algorithm for probabilistic temporal logic over reals (PRTL) specifications in the belief space. Our method automatically generates actions that improve confidence in a belief when necessary, thus using active perception to satisfy PRTL specifications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rafael Rodrigues da Silva (11 papers)
  2. Vince Kurtz (24 papers)
  3. Hai Lin (200 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.