Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Bounds on Lyapunov exponents via entropy accumulation (1905.03270v4)

Published 8 May 2019 in math-ph, cs.IT, math.DS, math.IT, math.MP, and quant-ph

Abstract: Lyapunov exponents describe the asymptotic behavior of the singular values of large products of random matrices. A direct computation of these exponents is however often infeasible. By establishing a link between Lyapunov exponents and an information theoretic tool called entropy accumulation theorem we derive an upper and a lower bound for the maximal and minimal Lyapunov exponent, respectively. The bounds assume independence of the random matrices, are analytical, and are tight in the commutative case as well as in other scenarios. They can be expressed in terms of an optimization problem that only involves single matrices rather than large products. The upper bound for the maximal Lyapunov exponent can be evaluated efficiently via the theory of convex optimization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.