Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissecting Android Cryptocurrency Miners (1905.02602v3)

Published 7 May 2019 in cs.CR

Abstract: Cryptojacking applications pose a serious threat to mobile devices. Due to the extensive computations, they deplete the battery fast and can even damage the device. In this work we make a step towards combating this threat. We collected and manually verified a large dataset of Android mining apps. In this paper, we analyze the gathered miners and identify how they work, what are the most popular libraries and APIs used to facilitate their development, and what static features are typical for this class of applications. Further, we analyzed our dataset using VirusTotal. The majority of our samples is considered malicious by at least one VirusTotal scanner, but 16 apps are not detected by any engine; and at least 5 apks were not seen previously by the service. Mining code could be obfuscated or fetched at runtime, and there are many confusing miner-related apps that actually do not mine. Thus, static features alone are not sufficient for miner detection. We have collected a feature set of dynamic metrics both for miners and unrelated benign apps, and built a machine learning-based tool for dynamic detection. Our BrenntDroid tool is able to detect miners with 95% of accuracy on our dataset. This preprint is a technical report accompanying the paper "Dissecting Android Cryptocurrency Miners" published in ACM CODASPY 2020.

Citations (10)

Summary

We haven't generated a summary for this paper yet.