Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visually-aware Recommendation with Aesthetic Features (1905.02009v2)

Published 2 May 2019 in cs.IR

Abstract: Visual information plays a critical role in human decision-making process. While recent developments on visually-aware recommender systems have taken the product image into account, none of them has considered the aesthetic aspect. We argue that the aesthetic factor is very important in modeling and predicting users' preferences, especially for some fashion-related domains like clothing and jewelry. This work addresses the need of modeling aesthetic information in visually-aware recommender systems. Technically speaking, we make three key contributions in leveraging deep aesthetic features: (1) To describe the aesthetics of products, we introduce the aesthetic features extracted from product images by a deep aesthetic network. We incorporate these features into recommender system to model users' preferences in the aesthetic aspect. (2) Since in clothing recommendation, time is very important for users to make decision, we design a new tensor decomposition model for implicit feedback data. The aesthetic features are then injected to the basic tensor model to capture the temporal dynamics of aesthetic preferences (e.g., seasonal patterns). (3) We also use the aesthetic features to optimize the learning strategy on implicit feedback data. We enrich the pairwise training samples by considering the similarity among items in the visual space and graph space; the key idea is that a user may likely have similar perception on similar items. We perform extensive experiments on several real-world datasets and demonstrate the usefulness of aesthetic features and the effectiveness of our proposed methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Wenhui Yu (16 papers)
  2. Xiangnan He (200 papers)
  3. Jian Pei (104 papers)
  4. Xu Chen (413 papers)
  5. Li Xiong (75 papers)
  6. Jinfei Liu (23 papers)
  7. Zheng Qin (58 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.