Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Convolutional Neural Network-Based Autonomous Drone Navigation (1905.01657v1)

Published 5 May 2019 in cs.CV

Abstract: This paper presents a novel approach for aerial drone autonomous navigation along predetermined paths using only visual input form an onboard camera and without reliance on a Global Positioning System (GPS). It is based on using a deep Convolutional Neural Network (CNN) combined with a regressor to output the drone steering commands. Furthermore, multiple auxiliary navigation paths that form a navigation envelope are used for data augmentation to make the system adaptable to real-life deployment scenarios. The approach is suitable for automating drone navigation in applications that exhibit regular trips or visits to same locations such as environmental and desertification monitoring, parcel/aid delivery and drone-based wireless internet delivery. In this case, the proposed algorithm replaces human operators, enhances accuracy of GPS-based map navigation, alleviates problems related to GPS-spoofing and enables navigation in GPS-denied environments. Our system is tested in two scenarios using the Unreal Engine-based AirSim plugin for drone simulation with promising results of average cross track distance less than 1.4 meters and mean waypoints minimum distance of less than 1 meter.

Citations (54)

Summary

We haven't generated a summary for this paper yet.