Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Product State Based Quantum Classifier (1905.01426v1)

Published 4 May 2019 in quant-ph, cs.ET, and cs.LG

Abstract: In recent years, interest in expressing the success of neural networks to the quantum computing has increased significantly. Tensor network theory has become increasingly popular and widely used to simulate strongly entangled correlated systems. Matrix product state (MPS) is the well-designed class of tensor network states, which plays an important role in processing of quantum information. In this paper, we have shown that matrix product state as one-dimensional array of tensors can be used to classify classical and quantum data. We have performed binary classification of classical machine learning dataset Iris encoded in a quantum state. Further, we have investigated the performance by considering different parameters on the ibmqx4 quantum computer and proved that MPS circuits can be used to attain better accuracy. Further, the learning ability of MPS quantum classifier is tested to classify evapotranspiration ($ET_{o}$) for Patiala meteorological station located in Northern Punjab (India), using three years of historical dataset (Agri). Furthermore, we have used different performance metrics of classification to measure its capability. Finally, the results are plotted and degree of correspondence among values of each sample is shown.

Citations (40)

Summary

We haven't generated a summary for this paper yet.