Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Topic-Agnostic Approach for Identifying Fake News Pages (1905.00957v1)

Published 2 May 2019 in cs.CL, cs.IR, and cs.SI

Abstract: Fake news and misinformation have been increasingly used to manipulate popular opinion and influence political processes. To better understand fake news, how they are propagated, and how to counter their effect, it is necessary to first identify them. Recently, approaches have been proposed to automatically classify articles as fake based on their content. An important challenge for these approaches comes from the dynamic nature of news: as new political events are covered, topics and discourse constantly change and thus, a classifier trained using content from articles published at a given time is likely to become ineffective in the future. To address this challenge, we propose a topic-agnostic (TAG) classification strategy that uses linguistic and web-markup features to identify fake news pages. We report experimental results using multiple data sets which show that our approach attains high accuracy in the identification of fake news, even as topics evolve over time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Sonia Castelo (11 papers)
  2. Thais Almeida (1 paper)
  3. Anas Elghafari (3 papers)
  4. AƩcio Santos (12 papers)
  5. Kien Pham (2 papers)
  6. Eduardo Nakamura (1 paper)
  7. Juliana Freire (46 papers)
Citations (91)

Summary

We haven't generated a summary for this paper yet.