Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Glidar3DJ: A View-Invariant gait identification via flash lidar data correction (1905.00943v2)

Published 2 May 2019 in eess.IV

Abstract: Gait recognition is a leading remote-based identification method, suitable for real-world surveillance and medical applications. Model-based gait recognition methods have been particularly recognized due to their scale and view-invariant properties. We present the first model-based gait recognition methodology, $\mathcal{G}$lidar3DJ using a skeleton model extracted from sequences generated by a single flash lidar camera. Existing successful model-based approaches take advantage of high quality skeleton data collected by Kinect and Mocap, for example, are not practicable for applications outside the laboratory. The low resolution and noisy imaging process of lidar negatively affects the performance of state-of-the-art skeleton-based systems, generating a significant number of outlier skeletons. We propose a rule-based filtering mechanism that adopts robust statistics to correct for skeleton joint measurements. Quantitative measurements validate the efficacy of the proposed method in improving gait recognition.

Citations (5)

Summary

We haven't generated a summary for this paper yet.