Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restricted Connection Orthogonal Matching Pursuit For Sparse Subspace Clustering (1905.00420v1)

Published 1 May 2019 in cs.LG and stat.ML

Abstract: Sparse Subspace Clustering (SSC) is one of the most popular methods for clustering data points into their underlying subspaces. However, SSC may suffer from heavy computational burden. Orthogonal Matching Pursuit applied on SSC accelerates the computation but the trade-off is the loss of clustering accuracy. In this paper, we propose a noise-robust algorithm, Restricted Connection Orthogonal Matching Pursuit for Sparse Subspace Clustering (RCOMP-SSC), to improve the clustering accuracy and maintain the low computational time by restricting the number of connections of each data point during the iteration of OMP. Also, we develop a framework of control matrix to realize RCOMP-SCC. And the framework is scalable for other data point selection strategies. Our analysis and experiments on synthetic data and two real-world databases (EYaleB & Usps) demonstrate the superiority of our algorithm compared with other clustering methods in terms of accuracy and computational time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.