Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and structure exploiting optimization algorithms: An integral quadratic constraint approach (1905.00279v2)

Published 1 May 2019 in math.OC and cs.SY

Abstract: We consider the problem of analyzing and designing gradient-based discrete-time optimization algorithms for a class of unconstrained optimization problems having strongly convex objective functions with Lipschitz continuous gradient. By formulating the problem as a robustness analysis problem and making use of a suitable adaptation of the theory of integral quadratic constraints, we establish a framework that allows to analyze convergence rates and robustness properties of existing algorithms and enables the design of novel robust optimization algorithms with prespecified guarantees capable of exploiting additional structure in the objective function.

Citations (52)

Summary

We haven't generated a summary for this paper yet.