Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a conditional inequality in Kolmogorov complexity and its applications in communication complexity (1905.00164v1)

Published 1 May 2019 in cs.CC, cs.IT, and math.IT

Abstract: Romashchenko and Zimand~\cite{rom-zim:c:mutualinfo} have shown that if we partition the set of pairs $(x,y)$ of $n$-bit strings into combinatorial rectangles, then $I(x:y) \geq I(x:y \mid t(x,y)) - O(\log n)$, where $I$ denotes mutual information in the Kolmogorov complexity sense, and $t(x,y)$ is the rectangle containing $(x,y)$. We observe that this inequality can be extended to coverings with rectangles which may overlap. The new inequality essentially states that in case of a covering with combinatorial rectangles, $I(x:y) \geq I(x:y \mid t(x,y)) - \log \rho - O(\log n)$, where $t(x,y)$ is any rectangle containing $(x,y)$ and $\rho$ is the thickness of the covering, which is the maximum number of rectangles that overlap. We discuss applications to communication complexity of protocols that are nondeterministic, or randomized, or Arthur-Merlin, and also to the information complexity of interactive protocols.

Summary

We haven't generated a summary for this paper yet.