Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Source Coding Based Millimeter-Wave Channel Estimation with Deep Learning Based Decoding (1905.00124v3)

Published 30 Apr 2019 in cs.IT, cs.LG, and math.IT

Abstract: The speed at which millimeter-Wave (mmWave) channel estimation can be carried out is critical for the adoption of mmWave technologies. This is particularly crucial because mmWave transceivers are equipped with large antenna arrays to combat severe path losses, which consequently creates large channel matrices, whose estimation may incur significant overhead. This paper focuses on the mmWave channel estimation problem. Our objective is to reduce the number of measurements required to reliably estimate the channel. Specifically, channel estimation is posed as a "source compression" problem in which measurements mimic an encoded (compressed) version of the channel. Decoding the observed measurements, a task which is traditionally computationally intensive, is performed using a deep-learning-based approach, facilitating a high-performance channel discovery. Our solution not only outperforms state-of-the-art compressed sensing methods, but it also determines the lower bound on the number of measurements required for reliable channel discovery.

Citations (1)

Summary

We haven't generated a summary for this paper yet.