Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MDFEM: Multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM (1904.13327v5)

Published 30 Apr 2019 in math.NA and cs.NA

Abstract: We introduce the multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficient $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\boldsymbol{y}) = \sum_{j\ge1} y_j\,\phi_j$ with $y_j\sim\mathcal{N}(0,1)$ and a given sequence of functions ${\phi_j}{j\ge1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the multivariate decomposition method (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using quasi-Monte Carlo (QMC) methods, and for which we use the finite element method (FEM) to solve different instances of the PDE. We develop higher-order quasi-Monte Carlo rules for integration over the finite-dimensional Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of anchored Gaussian Sobolev spaces, taking into account the truncation error. Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon{-1/\lambda-d'/\lambda}) = O(\epsilon{-(p+d'/\tau)/(1-p^)})$ where $\epsilon{-1/\lambda}$ and $\epsilon{-d'/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $d' = d \, (1+\delta')$ for some $\delta' \ge 0$ and $d$ the physical dimension, and $0 < p* \le (2+d'/\tau){-1}$ is a parameter representing the sparsity of ${\phi_j}{j\ge1}$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.