Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reproducing kernel of the space $R^t(K,μ)$ (1904.13311v1)

Published 30 Apr 2019 in math.FA

Abstract: For $1 \le t < \infty ,$ a compact subset $K$ of the complex plane $\mathbb C,$ and a finite positive measure $\mu$ supported on $K,$ $Rt(K, \mu)$ denotes the closure in $Lt (\mu )$ of rational functions with poles off $K$. Let $\Omega$ be a connected component of the set of analytic bounded point evaluations for $Rt(K, \mu)$. In this paper, we examine the behavior of the reproducing kernel of $Rt(K, \mu)$ near the boundary $\partial \Omega \cap \mathbb T$, assuming that $\mu (\partial \Omega \cap \mathbb T ) > 0$, where $\mathbb T$ is the unit circle.

Citations (1)

Summary

We haven't generated a summary for this paper yet.