Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft edit distance for differentiable comparison of symbolic sequences (1904.12562v1)

Published 29 Apr 2019 in cs.LG and stat.ML

Abstract: Edit distance, also known as Levenshtein distance, is an essential way to compare two strings that proved to be particularly useful in the analysis of genetic sequences and natural language processing. However, edit distance is a discrete function that is known to be hard to optimize. This fact hampers the use of this metric in Machine Learning. Even as simple algorithm as K-means fails to cluster a set of sequences using edit distance if they are of variable length and abundance. In this paper we propose a novel metric - soft edit distance (SED), which is a smooth approximation of edit distance. It is differentiable and therefore it is possible to optimize it with gradient methods. Similar to original edit distance, SED as well as its derivatives can be calculated with recurrent formulas at polynomial time. We prove usefulness of the proposed metric on synthetic datasets and clustering of biological sequences.

Citations (6)

Summary

We haven't generated a summary for this paper yet.