Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Technical Debt Prioritization: State of the Art. A Systematic Literature Review (1904.12538v2)

Published 29 Apr 2019 in cs.SE

Abstract: Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring Technical Debt should be prioritized with respect to developing features or fixing bugs. Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review among 384 unique papers published until 2018, following a consolidated methodology applied in Software Engineering. We included 38 primary studies. Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and optimizing on different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We report an impact map of such factors. However, there is a lack of empirical and validated set of tools. Conclusion. We observed that technical Debt prioritization research is preliminary and there is no consensus on what are the important factors and how to measure them. Consequently, we cannot consider current research conclusive and in this paper, we outline different directions for necessary future investigations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.