Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity (1904.11095v1)

Published 24 Apr 2019 in cs.LG and stat.ML

Abstract: We propose a new algorithm for hyperparameter selection in machine learning algorithms. The algorithm is a novel modification of Harmonica, a spectral hyperparameter selection approach using sparse recovery methods. In particular, we show that a special encoding of hyperparameter space enables a natural group-sparse recovery formulation, which when coupled with HyperBand (a multi-armed bandit strategy) leads to improvement over existing hyperparameter optimization methods such as Successive Halving and Random Search. Experimental results on image datasets such as CIFAR-10 confirm the benefits of our approach.

Citations (11)

Summary

We haven't generated a summary for this paper yet.