Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Drift in Multilingual Representations (1904.10820v4)

Published 24 Apr 2019 in cs.CL and cs.AI

Abstract: Multilingual representations have mostly been evaluated based on their performance on specific tasks. In this article, we look beyond engineering goals and analyze the relations between languages in computational representations. We introduce a methodology for comparing languages based on their organization of semantic concepts. We propose to conduct an adapted version of representational similarity analysis of a selected set of concepts in computational multilingual representations. Using this analysis method, we can reconstruct a phylogenetic tree that closely resembles those assumed by linguistic experts. These results indicate that multilingual distributional representations which are only trained on monolingual text and bilingual dictionaries preserve relations between languages without the need for any etymological information. In addition, we propose a measure to identify semantic drift between language families. We perform experiments on word-based and sentence-based multilingual models and provide both quantitative results and qualitative examples. Analyses of semantic drift in multilingual representations can serve two purposes: they can indicate unwanted characteristics of the computational models and they provide a quantitative means to study linguistic phenomena across languages. The code is available at https://github.com/beinborn/SemanticDrift.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lisa Beinborn (17 papers)
  2. Rochelle Choenni (17 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com