Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Layer Dynamics of Linearised Neural Nets (1904.10689v1)

Published 24 Apr 2019 in cs.LG and stat.ML

Abstract: Despite the phenomenal success of deep learning in recent years, there remains a gap in understanding the fundamental mechanics of neural nets. More research is focussed on handcrafting complex and larger networks, and the design decisions are often ad-hoc and based on intuition. Some recent research has aimed to demystify the learning dynamics in neural nets by attempting to build a theory from first principles, such as characterising the non-linear dynamics of specialised \textit{linear} deep neural nets (such as orthogonal networks). In this work, we expand and derive properties of learning dynamics respected by general multi-layer linear neural nets. Although an over-parameterisation of a single layer linear network, linear multi-layer neural nets offer interesting insights that explain how learning dynamics proceed in small pockets of the data space. We show in particular that multiple layers in linear nets grow at approximately the same rate, and there are distinct phases of learning with markedly different layer growth. We then apply a linearisation process to a general RelU neural net and show how nonlinearity breaks down the growth symmetry observed in liner neural nets. Overall, our work can be viewed as an initial step in building a theory for understanding the effect of layer design on the learning dynamics from first principles.

Citations (1)

Summary

We haven't generated a summary for this paper yet.