Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Hybrid Session-based News Recommendation with Recurrent Neural Networks (1904.10367v2)

Published 15 Apr 2019 in cs.IR, cs.LG, and stat.ML

Abstract: Recommender systems help users deal with information overload by providing tailored item suggestions to them. The recommendation of news is often considered to be challenging, since the relevance of an article for a user can depend on a variety of factors, including the user's short-term reading interests, the reader's context, or the recency or popularity of an article. Previous work has shown that the use of Recurrent Neural Networks is promising for the next-in-session prediction task, but has certain limitations when only recorded item click sequences are used as input. In this work, we present a contextual hybrid, deep learning based approach for session-based news recommendation that is able to leverage a variety of information types. We evaluated our approach on two public datasets, using a temporal evaluation protocol that simulates the dynamics of a news portal in a realistic way. Our results confirm the benefits of considering additional types of information, including article popularity and recency, in the proposed way, resulting in significantly higher recommendation accuracy and catalog coverage than other session-based algorithms. Additional experiments show that the proposed parameterizable loss function used in our method also allows us to balance two usually conflicting quality factors, accuracy and novelty. Keywords: Artificial Neural Networks, Context-Aware Recommender Systems, Hybrid Recommender Systems, News Recommender Systems, Session-based Recommendation

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (83)

Summary

We haven't generated a summary for this paper yet.