Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

T-SVD Based Non-convex Tensor Completion and Robust Principal Component Analysis (1904.10165v2)

Published 23 Apr 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Tensor completion and robust principal component analysis have been widely used in machine learning while the key problem relies on the minimization of a tensor rank that is very challenging. A common way to tackle this difficulty is to approximate the tensor rank with the $\ell_1-$norm of singular values based on its Tensor Singular Value Decomposition (T-SVD). Besides, the sparsity of a tensor is also measured by its $\ell_1-$norm. However, the $\ell_1$ penalty is essentially biased and thus the result will deviate. In order to sidestep the bias, we propose a novel non-convex tensor rank surrogate function and a novel non-convex sparsity measure. In this new setting by using the concavity instead of the convexity, a majorization minimization algorithm is further designed for tensor completion and robust principal component analysis. Furthermore, we analyze its theoretical properties. Finally, the experiments on natural and hyperspectral images demonstrate the efficacy and efficiency of our proposed method.

Citations (9)

Summary

We haven't generated a summary for this paper yet.