Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

City-scale Road Extraction from Satellite Imagery (1904.09901v2)

Published 22 Apr 2019 in cs.CV and cs.LG

Abstract: Automated road network extraction from remote sensing imagery remains a significant challenge despite its importance in a broad array of applications. To this end, we leverage recent open source advances and the high quality SpaceNet dataset to explore road network extraction at scale, an approach we call City-scale Road Extraction from Satellite Imagery (CRESI). Specifically, we create an algorithm to extract road networks directly from imagery over city-scale regions, which can subsequently be used for routing purposes. We quantify the performance of our algorithm with the APLS and TOPO graph-theoretic metrics over a diverse 608 square kilometer test area covering four cities. We find an aggregate score of APLS = 0.73, and a TOPO score of 0.58 (a significant improvement over existing methods). Inference speed is 160 square kilometers per hour on modest hardware. Finally, we demonstrate that one can use the extracted road network for any number of applications, such as optimized routing.

Citations (12)

Summary

We haven't generated a summary for this paper yet.