Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Predictive Control Framework for Improving Vehicle Cornering Performance Using Handling Characteristics (1904.09302v2)

Published 19 Apr 2019 in cs.SY

Abstract: This paper proposes a new control strategy to improve vehicle cornering performance in a model predictive control framework. The most distinguishing feature of the proposed method is that the natural handling characteristics of the production vehicle is exploited to reduce the complexity of the conventional control methods. For safety s sake, most production vehicles are built to exhibit an understeer handling characteristics to some extent. By monitoring how much the vehicle is biased into the understeer state, the controller attempts to adjust this amount in a way that improves the vehicle cornering performance. With this particular strategy, an innovative controller can be designed without road friction information, which complicates the conventional control methods. In addition, unlike the conventional controllers, the reference yaw rate that is highly dependent on road friction need not be defined due to the proposed control structure. The optimal control problem is formulated in a model predictive control framework to handle the constraints efficiently, and simulations in various test scenarios illustrate the effectiveness of the proposed approach.

Citations (16)

Summary

We haven't generated a summary for this paper yet.