Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Helly meets Garside and Artin (1904.09060v4)

Published 19 Apr 2019 in math.GR, math.AT, and math.GT

Abstract: A graph is Helly if every family of pairwise intersecting combinatorial balls has a nonempty intersection. We show that weak Garside groups of finite type and FC-type Artin groups are Helly, that is, they act geometrically on Helly graphs. In particular, such groups act geometrically on spaces with convex geodesic bicombing, equipping them with a nonpositive-curvature-like structure. That structure has many properties of a CAT(0) structure and, additionally, it has a combinatorial flavor implying biautomaticity. As immediate consequences we obtain new results for FC-type Artin groups (in particular braid groups and spherical Artin groups) and weak Garside groups, including e.g.\ fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes, braid groups of well-generated complex reflection groups, and one-relator groups with non-trivial center. Among the results are: biautomaticity, existence of EZ and Tits boundaries, the Farrell-Jones conjecture, the coarse Baum-Connes conjecture, and a description of higher order homological and homotopical Dehn functions. As a mean of proving the Helly property we introduce and use the notion of a (generalized) cell Helly complex.

Citations (48)

Summary

We haven't generated a summary for this paper yet.