Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Disagreement-based Active Learning in Online Settings (1904.09056v5)

Published 19 Apr 2019 in cs.LG and stat.ML

Abstract: We study online active learning for classifying streaming instances within the framework of statistical learning theory. At each time, the learner either queries the label of the current instance or predicts the label based on past seen examples. The objective is to minimize the number of queries while constraining the number of prediction errors over a horizon of length $T$. We develop a disagreement-based online learning algorithm for a general hypothesis space and under the Tsybakov noise. We show that the proposed algorithm has a label complexity of $O(dT{\frac{2-2\alpha}{2-\alpha}}\log2 T)$ under a constraint of bounded regret in terms of classification errors, where $d$ is the VC dimension of the hypothesis space and $\alpha$ is the Tsybakov noise parameter. We further establish a matching (up to a poly-logarithmic factor) lower bound, demonstrating the order optimality of the proposed algorithm. We address the tradeoff between label complexity and regret and show that the algorithm can be modified to operate at a different point on the tradeoff curve.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.