Dense orderings in the space of left-orderings of a group
Abstract: Every left-invariant ordering of a group is either discrete, meaning there is a least element greater than the identity, or dense. Corresponding to this dichotomy, the spaces of left, Conradian, and bi-orderings of a group are naturally partitioned into two subsets. This note investigates the structure of this partition, specifically the set of dense orderings of a group and its closure within the space of orderings. We show that for bi-orderable groups this closure will always contain the space of Conradian orderings---and often much more. In particular, the closure of the set of dense orderings of the free group is the entire space of left-orderings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.