Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complementary Fusion of Multi-Features and Multi-Modalities in Sentiment Analysis (1904.08138v5)

Published 17 Apr 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Sentiment analysis, mostly based on text, has been rapidly developing in the last decade and has attracted widespread attention in both academia and industry. However, the information in the real world usually comes from multiple modalities, such as audio and text. Therefore, in this paper, based on audio and text, we consider the task of multimodal sentiment analysis and propose a novel fusion strategy including both multi-feature fusion and multi-modality fusion to improve the accuracy of audio-text sentiment analysis. We call it the DFF-ATMF (Deep Feature Fusion - Audio and Text Modality Fusion) model, which consists of two parallel branches, the audio modality based branch and the text modality based branch. Its core mechanisms are the fusion of multiple feature vectors and multiple modality attention. Experiments on the CMU-MOSI dataset and the recently released CMU-MOSEI dataset, both collected from YouTube for sentiment analysis, show the very competitive results of our DFF-ATMF model. Furthermore, by virtue of attention weight distribution heatmaps, we also demonstrate the deep features learned by using DFF-ATMF are complementary to each other and robust. Surprisingly, DFF-ATMF also achieves new state-of-the-art results on the IEMOCAP dataset, indicating that the proposed fusion strategy also has a good generalization ability for multimodal emotion recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Feiyang Chen (18 papers)
  2. Ziqian Luo (6 papers)
  3. Yanyan Xu (31 papers)
  4. Dengfeng Ke (12 papers)
Citations (71)