Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are State-of-the-art Visual Place Recognition Techniques any Good for Aerial Robotics? (1904.07967v2)

Published 16 Apr 2019 in cs.CV

Abstract: Visual Place Recognition (VPR) has seen significant advances at the frontiers of matching performance and computational superiority over the past few years. However, these evaluations are performed for ground-based mobile platforms and cannot be generalized to aerial platforms. The degree of viewpoint variation experienced by aerial robots is complex, with their processing power and on-board memory limited by payload size and battery ratings. Therefore, in this paper, we collect $8$ state-of-the-art VPR techniques that have been previously evaluated for ground-based platforms and compare them on $2$ recently proposed aerial place recognition datasets with three prime focuses: a) Matching performance b) Processing power consumption c) Projected memory requirements. This gives a birds-eye view of the applicability of contemporary VPR research to aerial robotics and lays down the the nature of challenges for aerial-VPR.

Citations (23)

Summary

We haven't generated a summary for this paper yet.