Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Bounds for Learning Multiple Components with Permutation-Invariant Losses (1904.07594v2)

Published 16 Apr 2019 in stat.ML and cs.LG

Abstract: This paper proposes a simple approach to derive efficient error bounds for learning multiple components with sparsity-inducing regularization. We show that for such regularization schemes, known decompositions of the Rademacher complexity over the components can be used in a more efficient manner to result in tighter bounds without too much effort. We give examples of application to switching regression and center-based clustering/vector quantization. Then, the complete workflow is illustrated on the problem of subspace clustering, for which decomposition results were not previously available. For all these problems, the proposed approach yields risk bounds with mild dependencies on the number of components and completely removes this dependence for nonconvex regularization schemes that could not be handled by previous methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.